Role of nitric oxide in classical conditioning of siphon withdrawal in Aplysia.

نویسندگان

  • Igor Antonov
  • Thomas Ha
  • Irina Antonova
  • Leonid L Moroz
  • Robert D Hawkins
چکیده

Nitric oxide (NO) is thought to be involved in several forms of learning in vivo and synaptic plasticity in vitro, but very little is known about the role of NO during physiological forms of plasticity that occur during learning. We addressed that question in a simplified preparation of the Aplysia siphon-withdrawal reflex. We first used in situ hybridization to show that the identified L29 facilitator neurons express NO synthase. Furthermore, exogenous NO produced facilitation of sensory-motor neuron EPSPs, and an inhibitor of NO synthase or an NO scavenger blocked behavioral conditioning. Application of the scavenger to the ganglion or injection into a sensory neuron blocked facilitation of the EPSP and changes in the sensory-neuron membrane properties during conditioning. Injection of the scavenger into the motor neuron reduced facilitation without affecting sensory neuron membrane properties, and injection of an inhibitor of NO synthase had no effect. Postsynaptic injection of an inhibitor of exocytosis had effects similar to injection of the scavenger. However, changes in the shape of the EPSP during conditioning were not consistent with postsynaptic AMPA-like receptor insertion but were mimicked by presynaptic spike broadening. These results suggest that NO makes an important contribution during conditioning and acts directly in both the sensory and motor neurons to affect different processes of facilitation at the synapses between them. In addition, they suggest that NO does not come from either the sensory or motor neurons but rather comes from another source, perhaps the L29 interneurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica.

The defensive siphon and gill withdrawal reflex of Aplysia is a simple reflex mediated by a well-defined neural circuit. This reflex exhibits classical conditioning when a weak tactile stimulus to the siphon is used as a conditioned stimulus and a strong shock to the tail is used as an unconditioned stimulus. The siphon withdrawal component of this reflex can be differentially conditioned when ...

متن کامل

Effects of interstimulus interval and contingency on classical conditioning of the Aplysia siphon withdrawal reflex.

The siphon withdrawal reflex of Aplysia undergoes differential classical conditioning with cutaneous stimulation of the siphon or mantle shelf as the discriminative conditioned stimuli (CS+ and CS-) and shock to the tail as the unconditioned stimulus (US). The reflex has proved to be useful for analyzing the neural mechanisms of conditioning. To test the generality of this experimental system, ...

متن کامل

Classical conditioning of the Aplysia siphon-withdrawal reflex exhibits response specificity.

The gill- and siphon-withdrawal reflex of Aplysia undergoes classical conditioning of its amplitude and duration when siphon stimulation (the conditioned stimulus, CS) is paired with tail or mantle shock (the unconditioned stimulus, US). This conditioning of a preexisting response exhibits both temporal and stimulus specificities, which can be accounted for by activity-dependent enhancement of ...

متن کامل

The contribution of activity-dependent synaptic plasticity to classical conditioning in Aplysia.

Plasticity at central synapses has long been thought to be the most likely mechanism for learning and memory, but testing that idea experimentally has proven to be difficult. For this reason, we have developed a simplified preparation of the Aplysia siphon withdrawal reflex that allows one to examine behavioral learning and memory while simultaneously monitoring synaptic connections between ind...

متن کامل

Classical conditioning in a simple withdrawal reflex in Aplysia californica.

The ability of Aplysia and other gastropod molluscs to exhibit complex behaviors that can be modified by associative learning has encouraged us to search for an elementary behavior controlled by a simple and well analyzed neural circuit that also can be modified by this type of learning. Toward that end, we have now produced classical conditioning in the defensive siphon and gill withdrawal ref...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 41  شماره 

صفحات  -

تاریخ انتشار 2007